The quality of knowledge retrieval is crucial in knowledge-intensive conversations. Two common strategies to improve the retrieval quality are finetuning the retriever or generating a self-contained query, while they encounter heavy burdens on expensive computation and elaborate annotations. In this paper, we propose an unsupervised query enhanced approach for knowledge-intensive conversations, namely QKConv. There are three modules in QKConv: a query generator, an off-the-shelf knowledge selector, and a response generator. Without extra supervision, the end-to-end joint training of QKConv explores multiple candidate queries and utilizes corresponding selected knowledge to yield the target response. To evaluate the effectiveness of the proposed method, we conducted comprehensive experiments on conversational question-answering, task-oriented dialogue, and knowledge-grounded conversation. Experimental results demonstrate that QKConv achieves state-of-the-art performance compared to unsupervised methods and competitive performance compared to supervised methods.
translated by 谷歌翻译
通过社交媒体评论预先培训的许多开放域对话模型都可以产生连贯的答复,但在与真实用户互动时会产生引人入胜的答复。这种现象可能主要是由于注释的人类对话的不足以及与人类偏爱的未对准。在本文中,我们提出了一种新颖而有效的方法,以增强开放域聊天机器人,其中有两种人类反馈(包括明确的演示和隐性偏好),并利用了。通过要求注释者选择或修改模型生成的候选响应,Diamante有效地收集了人类证明的响应并构建了中国聊天数据集。为了增强与人类偏好的一致性,Diamante利用数据收集过程中的隐含偏好,并引入了生成评估联合培训。全面的实验表明,Diamante数据集和联合培训范式可以显着提高中国预训练的对话模型的性能。
translated by 谷歌翻译
生成的开放域对话系统可以从外部知识中受益,但是缺乏外部知识资源和寻找相关知识的困难限制了该技术的发展。为此,我们使用动态服务信息提出了一个知识驱动的对话任务。具体而言,我们使用大量的服务API,可以作为外部知识来源提供高覆盖范围和时空敏感性。对话系统生成查询以请求外部服务以及用户信息,获取相关知识,并基于此知识生成响应。为了实现此方法,我们收集并发布了第一个开放式域中国服务知识对话数据集Dusinc。同时,我们构建了一个基线模型柏拉图 - 线,该模型实现了对话的自动利用。自动评估和人类评估都表明,我们提出的新方法可以显着改善开放域对话的效果,并且与对话预培训模型Plato-2相比,人类评估中的会话级总数提高了59.29%。数据集和基准模型将被开源。
translated by 谷歌翻译
面向任务导向的对话系统已经受到获得大规模和高质量的注释对话的困难困扰。此外,大多数公开的数据集仅包括书面对话,这不足以反映实际口头对话系统中的实际人类行为。在本文中,我们提出了面向任务的对话数据增强(TOD-DA),这是一种新型模型 - 不可知的数据增强范例,以提高面向任务对话建模的鲁棒性。 TOD-DA由两个模块组成:1)对话丰富,以扩展关于易于执行数据稀疏性的任务对话的培训数据,用于宽松数据稀疏性和2)口语对话模拟器,以模仿各种粒度的口语样式表达和语音识别错误,以弥合书面之间的差距和口头对话。通过这样的设计,我们的方法在DSTC10 Track2的两个任务中排名第一,这是针对口语对话的任务对话建模的基准,展示了我们提出的TOD-DA的优势和有效性。
translated by 谷歌翻译
Optimal transport (OT) has become a widely used tool in the machine learning field to measure the discrepancy between probability distributions. For instance, OT is a popular loss function that quantifies the discrepancy between an empirical distribution and a parametric model. Recently, an entropic penalty term and the celebrated Sinkhorn algorithm have been commonly used to approximate the original OT in a computationally efficient way. However, since the Sinkhorn algorithm runs a projection associated with the Kullback-Leibler divergence, it is often vulnerable to outliers. To overcome this problem, we propose regularizing OT with the \beta-potential term associated with the so-called $\beta$-divergence, which was developed in robust statistics. Our theoretical analysis reveals that the $\beta$-potential can prevent the mass from being transported to outliers. We experimentally demonstrate that the transport matrix computed with our algorithm helps estimate a probability distribution robustly even in the presence of outliers. In addition, our proposed method can successfully detect outliers from a contaminated dataset
translated by 谷歌翻译
In the era of Internet of Things (IoT), network-wide anomaly detection is a crucial part of monitoring IoT networks due to the inherent security vulnerabilities of most IoT devices. Principal Components Analysis (PCA) has been proposed to separate network traffics into two disjoint subspaces corresponding to normal and malicious behaviors for anomaly detection. However, the privacy concerns and limitations of devices' computing resources compromise the practical effectiveness of PCA. We propose a federated PCA-based Grassmannian optimization framework that coordinates IoT devices to aggregate a joint profile of normal network behaviors for anomaly detection. First, we introduce a privacy-preserving federated PCA framework to simultaneously capture the profile of various IoT devices' traffic. Then, we investigate the alternating direction method of multipliers gradient-based learning on the Grassmann manifold to guarantee fast training and the absence of detecting latency using limited computational resources. Empirical results on the NSL-KDD dataset demonstrate that our method outperforms baseline approaches. Finally, we show that the Grassmann manifold algorithm is highly adapted for IoT anomaly detection, which permits drastically reducing the analysis time of the system. To the best of our knowledge, this is the first federated PCA algorithm for anomaly detection meeting the requirements of IoT networks.
translated by 谷歌翻译
In this paper, we propose a novel architecture, the Enhanced Interactive Transformer (EIT), to address the issue of head degradation in self-attention mechanisms. Our approach replaces the traditional multi-head self-attention mechanism with the Enhanced Multi-Head Attention (EMHA) mechanism, which relaxes the one-to-one mapping constraint among queries and keys, allowing each query to attend to multiple keys. Furthermore, we introduce two interaction models, Inner-Subspace Interaction and Cross-Subspace Interaction, to fully utilize the many-to-many mapping capabilities of EMHA. Extensive experiments on a wide range of tasks (e.g. machine translation, abstractive summarization, grammar correction, language modelling and brain disease automatic diagnosis) show its superiority with a very modest increase in model size.
translated by 谷歌翻译
Modern autonomous driving system is characterized as modular tasks in sequential order, i.e., perception, prediction and planning. As sensors and hardware get improved, there is trending popularity to devise a system that can perform a wide diversity of tasks to fulfill higher-level intelligence. Contemporary approaches resort to either deploying standalone models for individual tasks, or designing a multi-task paradigm with separate heads. These might suffer from accumulative error or negative transfer effect. Instead, we argue that a favorable algorithm framework should be devised and optimized in pursuit of the ultimate goal, i.e. planning of the self-driving-car. Oriented at this goal, we revisit the key components within perception and prediction. We analyze each module and prioritize the tasks hierarchically, such that all these tasks contribute to planning (the goal). To this end, we introduce Unified Autonomous Driving (UniAD), the first comprehensive framework up-to-date that incorporates full-stack driving tasks in one network. It is exquisitely devised to leverage advantages of each module, and provide complementary feature abstractions for agent interaction from a global perspective. Tasks are communicated with unified query design to facilitate each other toward planning. We instantiate UniAD on the challenging nuScenes benchmark. With extensive ablations, the effectiveness of using such a philosophy is proven to surpass previous state-of-the-arts by a large margin in all aspects. The full suite of codebase and models would be available to facilitate future research in the community.
translated by 谷歌翻译
Task transfer learning is a popular technique in image processing applications that uses pre-trained models to reduce the supervision cost of related tasks. An important question is to determine task transferability, i.e. given a common input domain, estimating to what extent representations learned from a source task can help in learning a target task. Typically, transferability is either measured experimentally or inferred through task relatedness, which is often defined without a clear operational meaning. In this paper, we present a novel metric, H-score, an easily-computable evaluation function that estimates the performance of transferred representations from one task to another in classification problems using statistical and information theoretic principles. Experiments on real image data show that our metric is not only consistent with the empirical transferability measurement, but also useful to practitioners in applications such as source model selection and task transfer curriculum learning.
translated by 谷歌翻译
Summary quality assessment metrics have two categories: reference-based and reference-free. Reference-based metrics are theoretically more accurate but are limited by the availability and quality of the human-written references, which are both difficulty to ensure. This inspires the development of reference-free metrics, which are independent from human-written references, in the past few years. However, existing reference-free metrics cannot be both zero-shot and accurate. In this paper, we propose a zero-shot but accurate reference-free approach in a sneaky way: feeding documents, based upon which summaries generated, as references into reference-based metrics. Experimental results show that this zero-shot approach can give us the best-performing reference-free metrics on nearly all aspects on several recently-released datasets, even beating reference-free metrics specifically trained for this task sometimes. We further investigate what reference-based metrics can benefit from such repurposing and whether our additional tweaks help.
translated by 谷歌翻译